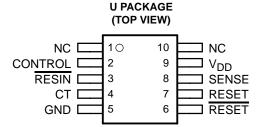
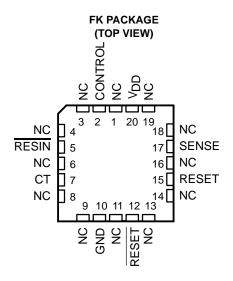
- Power-On Reset Generator
- Automatic Reset Generation After Voltage Drop
- Precision Voltage Sensor
- Temperature-Compensated Voltage Reference
- Programmable Delay Time by External Capacitor
- Supply Voltage Range . . . 2 V to 6 V
- Defined RESET Output from V_{DD} ≥1 V
- Power-Down Control Support for Static RAM With Battery Backup
- Maximum Supply Current of 16 μA
- Power Saving Totem-Pole Outputs
- Temperature Range . . . Up to −55°C to 125°C

The TLC77xx family of micropower supply voltage supervisors provide reset control, primarily in microcomputer and microprocessor systems.

During power-on, \overline{RESET} is asserted when V_{DD} reaches 1 V. After minimum V_{DD} (\geq 2 V) is established, the circuit monitors SENSE voltage and keeps the reset outputs active as long as SENSE voltage ($V_{I(SENSE)}$) remains below the threshold voltage. An internal timer delays return of the output to the inactive state to ensure proper system reset. The delay time, t_d , is determined by an external capacitor:


$$t_d = 2.1 \times 10^4 \times C_T$$


Where

C_⊤ is in farads

td is in seconds

Except for the TLC7701, which can be customized with two external resistors, each supervisor has a fixed SENSE threshold voltage set by an internal voltage divider. When SENSE voltage drops below the threshold voltage, the outputs become active and stay in that state until SENSE voltage returns above threshold voltage and the delay time, $t_{\rm cl}$, has expired.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVS087L - DECEMBER 1994 - REVISED FEBRUARY 2003

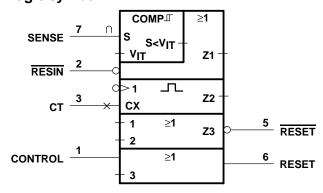
description (continued)

In addition to the power-on-reset and undervoltage-supervisor function, the TLC77xx adds power-down control support for static RAM. When CONTROL is tied to GND, RESET will act as active high. The voltage monitor contains additional logic intended for control of static memories with battery backup during power failure. By driving the chip select (CS) of the memory circuit with the RESET output of the TLC77xx and with the CONTROL driven by the memory bank select signal (CSH1) of the microprocessor (see Figure 10), the memory circuit is automatically disabled during a power loss. (In this application the TLC77xx power has to be supplied by the battery.)

The TLC77xxI is characterized for operation over a temperature range of -40° C to 85° C; the TLC77xxQ is characterized for operation over a temperature range of -40° C to 125° C; and the TLC77xxM is characterized for operation over the full Military temperature range of -55° C to 125° C.

AVAILABLE OPTIONS

			PACKAGED DEVICES								
TA	THRESHOLD VOLTAGE (V)	SMALL OUTLINE (D)†	CHIP CARRIER (FK)	CERAMIC DIP (JG)	CERAMIC DUAL FLATPACK (U)	PLASTIC DIP (P)	THIN SHRINK SMALL OUTLINE (PW)‡				
	1.1	TLC7701ID	_		_	TLC7701IP	TLC7701IPW				
-40°C	2.25	TLC7725ID	_			TLC7725IP	TLC7725IPW				
to	2.63	TLC7703ID	_	_	_	TLC7703IP	TLC7703IPW				
85°C	2.93	TLC7733ID	_	_	_	TLC7733IP	TLC7733IPW				
	4.55	TLC7705ID	_	_	_	TLC7705IP	TLC7705IPW				
	1.1	TLC7701QD	_	_	_	TLC7701QP	TLC7701QPW				
-40°C	2.25	TLC7725QD	_	_	_	TLC7725QP	TLC7725QPW				
to	2.63	TLC7703QD	_	_	_	TLC7703QP	TLC7703QPW				
125°C	2.93	TLC7733QD	_	_	_	TLC7733QP	TLC7733QPW				
	4.55	TLC7705QD	_	_	_	TLC7705QP	TLC7705QPW				
−55°C to	2.93	_	TLC7733MFK	TLC7733MJG	_	_	_				
to 125°C	4.55	_	TLC7705MFK	TLC7705MJG	TLC7705MU	_	_				

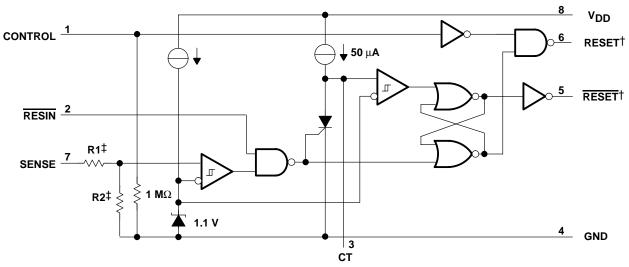

[†] The D package is available taped and reeled. Add the suffix R to the device type when ordering (e.g., TLC7705QDR).

FUNCTION TABLE

CONTROL	RESIN	V _I (SENSE)>V _{IT+}	RESET	RESET
L	L	False	Н	L
L	L	True	Н	L
L	Н	False	Н	L
L	Н	True	L§	н§
Н	L	False	Н	L
Н	L	True	Н	L
Н	Н	False	Н	L
Н	Н	True	Н	Н§

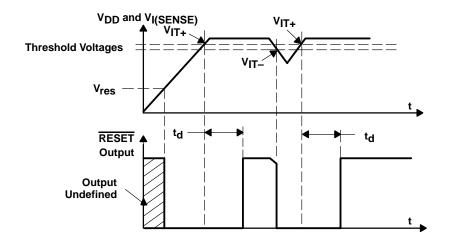
[§] RESET and RESET states shown are valid for t > td.

logic symbol¶



[¶] This symbol is in accordance with ANSI/IEEE Std 91–1984 and IEC Publication 617-12.

[‡]The PW package is only available left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TLC7705QPWLE).


functional block diagram

- †Outputs are totem-pole configuration. External pullup or pulldown resistors are not required.
- ‡ Nominal values:

	R1 (Typ)	R2 (Typ)
TLC7701	0	8
TLC7725	600 kΩ	600 kΩ
TLC7703	698 kΩ	502 kΩ
TLC7733	750 kΩ	450 kΩ
TLC7705	910 kΩ	290 kΩ

timing diagram

SLVS087L - DECEMBER 1994 - REVISED FEBRUARY 2003

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Input voltage range, CONTROL, RESIN, SENSE (see Note 1)	0.3 V to 7 V
Maximum low output current, I _{OL}	10 mA
Maximum high output current, IOH	–10 mA
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{DD}$)	±10 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{DD})	±10 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A : TL77xxI	–40°C to 85°C
TL77xxQ	–40°C to 125°C
TL77xxM	–55°C to 125°C
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	377 mW	145 mW
FK	1375 mW	11.0 mW/°C	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	520 mW	200 mW
PW	525 mW	4.2 mW/°C	273 mW	105 mW
U	700 mW	5.5 mW/°C	370 mW	150 mW

recommended operating conditions at specified temperature range

			MIN	MAX	UNIT
Supply voltage, V _{DD}			2	6	V
Input voltage, V _I			0	V	
High-level input voltage at RESIN and CONTR	OL [‡] , V _{IH}		0.7×V _{DD}	V	
Low-level input voltage at RESIN and CONTR	OL‡, V _{IL}			0.2×V _{DD}	V
High-level output current, IOH	V>27V			-2	mA
Low-level output current, IOL	TROL ‡ , V _{IL} $V_{DD} \ge 2.7 \text{ V}$		2	mA	
Input transition rise and fall rate at RESIN and	CONTROL, Δt/ΔV			100	ns/V
Operating free-air temperature range, TA	TLC77xxI		-40	85	°C
Operating nee-all temperature range, 1A	TLC77xxQ		-40	V _{DD} 0 0.2×V _{DD} -2 2 100	C
Operating free-air temperature range, TA	TLC77xxM		-55	125	°C

 $[\]overline{\ddagger}$ To ensure a low supply current, V_{IL} should be kept < 0.3 V and V_{IH} > V_{DD} -0.3 V.

electrical characteristics over recommended operating conditions (see Note 2) (unless otherwise noted)

					1	TLC77xx		
	PARAMETE	ER .		TEST CONDITIONS	MIN	түр†	MAX	UNIT
				V _{DD} = 2 V	1.8			
M	High lavel autout valtage	I _{OH} = -20 μ	Α	V _{DD} = 2.7 V	2.5			V
VOH	High-level output voltage			V _{DD} = 4.5 V	4.3			V
		$I_{OH} = -2 \text{ m/s}$	A	V _{DD} = 4.5 V	3.7			
				V _{DD} = 2 V			0.2	
\/a.	Low-level output voltage	I _{OL} = 20 μA		V _{DD} = 2.7 V			0.2	V
VOL	Low-level output voltage			V _{DD} = 4.5 V			0.2	V
		$I_{OL} = 2 \text{ mA}$		V _{DD} = 4.5 V			0.5	
			TLC7701		1.04	1.1	1.16	
			TLC7725		2.18	2.25	2.32	
V_{IT-}	Negative-going input thresh SENSE (see Note 3)	old voltage,	TLC7703	$V_{DD} = 2 V \text{ to } 6 V$	2.56	2.63	2.70	V
	02.102 (000 110.0 0)		TLC7733		2.86	2.93	3	
			TLC7705		4.47	4.55	4.63	
	Hysteresis voltage, SENSE TLC7 TLC7		TLC7701	$V_{DD} = 2 V \text{ to } 6 V$		30		mV
			TLC7725					
V_{hys}			TLC7703,	V _{DD} = 2 V to 6 V		70		mV
			TLC7733,					IIIV
			TLC7705					
V _{res}	Power-up reset voltage‡			I _{OL} = 20 μA			1	V
		RESIN		V _I = 0 V to V _{DD}			2	
1.	Lament accomment	CONTROL		$V_I = V_{DD}$		7	15	^
lı	Input current	SENSE		V _I = 5 V		5	10	μΑ
		SENSE, TLC	7701 only	V _I = 5 V			2	
I _{DD}	Supply current		$\overline{\text{RESIN}} = \text{V}_{\text{DD}},$ $\text{SENSE} = \text{V}_{\text{DD}} \ge \text{V}_{\text{IT}} \text{max} + 0.2 \text{ V}$ $\text{CONTROL} = 0 \text{ V}, \text{Outputs open}$		9	16	μΑ	
I _{DD(d)}	DD(d) Supply current during t _d			$\begin{split} & \frac{V_{DD} = 5 \text{ V,}}{\text{RESIN}} = V_{DD}, & \text{SENSE} = V_{DD}, \\ & \text{CONTROL} = 0 \text{ V,} & \text{Outputs open} \end{split}$		120	150	μΑ
Cl	Input capacitance, SENSE			$V_I = 0 V \text{ to } V_{DD}$		50		pF

[†] Typical values apply at $T_A = 25$ °C.

[‡]The lowest supply voltage at which RESET becomes active. The symbol V_{res} is not currently listed within EIA or JEDEC standards for semiconductor symbology. Rise time of V_{DD} ≥ 15 μs/V.

NOTES: 2. All characteristics are measured with $C_T = 0.1 \mu F$.

^{3.} To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 µF) should be connected near the supply terminals.

SLVS087L - DECEMBER 1994 - REVISED FEBRUARY 2003

electrical characteristics over recommended operating conditions (see Note 2) (unless otherwise noted)

	545445				ONDITIONS.	T	LC77xxN	1	
	PARAME	IEK		l lesi c	ONDITIONS	MIN	TYP [†]	MAX	UNIT
				V== - 2 V	T _A = 25°C	1.8			
				$V_{DD} = 2 V$,	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	1.7			
		J 00	Λ	V 0.7.V	T _A = 25°C	2.5			
\ _{\\-}	High-level output	I _{OH} = -20 μ	4	V _{DD} = 2.7 V	$T_A = -55^{\circ}C$ to $125^{\circ}C$	2.3			V
VOH	voltage			V 45V	T _A = 25°C	4.3			V
				V _{DD} = 4.5 V	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	4.2			
		Ja 2 m/		V== - 4 E V	T _A = 25°C	3.7			
		$I_{OH} = -2 \text{ m/s}$	1	V _{DD} = 4.5 V	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	3.6			
				V _{DD} = 2 V	T _A = 25°C			0.2	
				VDD = 2 v	$T_A = -55^{\circ}C$ to $125^{\circ}C$			0.2	
		lo 20 A		V== - 2.7.V	T _A = 25°C			0.2	
\ _{\\-} .	Low-level output	I _{OL} = 20 μA		$V_{DD} = 2.7 V$	$T_A = -55^{\circ}C$ to $125^{\circ}C$			0.2	,
VOL	voltage		V 45V	T _A = 25°C			0.2	V	
				V _{DD} = 4.5 V	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$				0.2
		I _{OL} = 2 mA		V== 45V	T _A = 25°C				0.5
				V _{DD} = 4.5 V	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$				0.5
\/	Negative-going input thr	eshold	TLC7733	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		2.86	2.93	3.1	V
VIT-	voltage, SENSE (see No	ote 3)	TLC7705	$V_{DD} = 2 \text{ V to } 6 \text{ V}$		4.3	4.5	4.8	V
V _{hys}	Hysteresis voltage, SEN	ISE		$V_{DD} = 2 V \text{ to } 6 V$	V _{DD} = 2 V to 6 V		70		mV
V _{res}	Power-up reset voltage	ţ		I _{OL} = 20 μA				1	V
		RESIN		$V_I = 0 V \text{ to } V_{DD}$				2	
l.		CONTROL		$V_I = V_{DD}$			7	15	^
'1	Input current	SENSE		V _I = 5 V			5	10	μΑ
		SENSE, TLC	7701 only	V _I = 5 V				2	
I _{DD}	Supply current			RESIN = V_{DD} , SENSE = $V_{DD} \ge V_{IT} max + 0.2 V$ CONTROL = 0 V, Outputs open			9	16	μА
וטטנא	Supply current during t _d		TLC7733	$\frac{V_{CT} = 0}{RESIN} = V_{DD},$ CONTROL = 0 V,	V _{DD} = 3.3 V			250	μΑ
IDD(d)	Supply current during to		TLC7705	SENSE = V _{DD} , Outputs open	V _{DD} = 5 V		120	150	μΛ
Cl	Input capacitance, SEN	SE		$V_I = 0 V \text{ to } V_{DD}$			50		pF

[†] Typical values apply at $T_A = 25$ °C.

[‡] The lowest supply voltage at which $\overline{\text{RESET}}$ becomes active. The symbol V_{res} is not currently listed within EIA or JEDEC standards for semiconductor symbology. Rise time of $V_{\text{DD}} \ge 15~\mu\text{s/V}$.

NOTES: 2. All characteristics are measured with $C_T = 0.1 \mu F$.

^{3.} To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 µF) should be placed near the supply terminals.

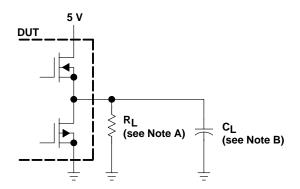
SLVS087L - DECEMBER 1994 - REVISED FEBRUARY 2003

switching characteristics at V_{DD} = 5 V, R_L = 2 k Ω , C_L = 50 pF, T_A = 25°C (unless otherwise noted)

		MEASUR	ED		Т			
	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	MIN TYP MAX		UNIT
^t d	Delay time	VI(SENSE) ≥ VIT+	RESET and RESET	$\overline{RESIN} = 0.7 \times V_{DD},$ $CONTROL = 0.2 \times V_{DD},$ $C_T = 100 \text{ nF},$ $T_A = \text{Full range},$ See timing diagram	1.1	2.1	4.2	ms
tPLH	Propagation delay time, low-to-high-level output		DECET	W			20	
^t PHL	Propagation delay time, high-to-low-level output	CENCE	RESET	$V_{IH} = V_{IT+} max + 0.2 \text{ V},$ $V_{IL} = V_{IT-} min - 0.2 \text{ V},$ $\overline{RESIN} = 0.7 \times V_{DD},$				
^t PLH	Propagation delay time, low-to-high-level output	SENSE	RESET	CONTROL = $0.2 \times V_{DD}$, CT = NC†			5	μs
^t PHL	Propagation delay time, high-to-low-level output]	KESEI	C1 = NC1			20	
^t PLH	Propagation delay time, low-to-high-level output			V. 0.7V			20	μs
tPHL	Propagation delay time, high-to-low-level output	DEON		$V_{IH} = 0.7 \times V_{DD}$, $V_{IL} = 0.2 \times V_{DD}$,			40	
^t PLH	Propagation delay time, low-to-high-level output	RESIN		SENSE = V_{IT+} max + 0.2 V, CONTROL = 0.2 × V_{DD} , CT = NC \dagger			45	ns
tPHL	Propagation delay time, high-to-low-level output		KESET	CT = NCT			20	μs
^t PLH	Propagation delay time, low-to-high-level output	CONTROL	RESET	$V_{IH} = 0.7 \times V_{DD},$ $V_{IL} = 0.2 \times V_{DD},$ $SENSE = V_{IT+max} + 0.2 V,$			38	ns
^t PHL	Propagation delay time, high-to-low-level output	CONTROL	KLOLI	$\frac{\text{BESIN}}{\text{RESIN}} = 0.7 \times \text{V}_{\text{DD}},$ $\text{CT} = \text{NC}^{\dagger}$			38	ns
	Low-level minimum pulse	SENSE		$V_{IH} = V_{IT+} max + 0.2 V,$ $V_{IL} = V_{IT-} min - 0.2 V,$	3			
	duration to switch RESET and RESET	RESIN		$V_{IL} = 0.2 \times V_{DD},$ $V_{IH} = 0.7 \times V_{DD}$	1			μs
t _r	Rise time		RESET	10% to 90%		8		
t _f	Fall time		and RESET	90% to 10%		4		ns/V

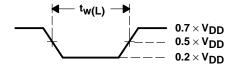
[†] NC = No capacitor, and includes up to 100-pF probe and jig capacitance.

SLVS087L - DECEMBER 1994 - REVISED FEBRUARY 2003


switching characteristics at V_{DD} = 5 V, R_L = 2 $k\Omega$, C_L = 50 pF

		MEASURED				TLC77xxM				
	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT	
t _d	Delay time	VI(SENSE) ≥ VIT+	RESET and RESET	RESIN = 2.7 V, CONTROL = 0.4 V, C _T = 100 nF, See timing diagram	Full range	1.1	2.1	4.2	ms	
					25°C			20		
.	Propagation delay time, low-to-high-level	SENSE	RESET	$V_{IH} = V_{IT+} max + 0.2 V,$ $V_{IL} = V_{IT-} min - 0.2 V,$ RESIN = 2.7 V,	Full range			24	μs	
^t PLH	output	SENSE		CONTROL = 0.4 V,	25°C			5		
	·		RESET	CT = NC†	Full range			7	μs	
					25°C			5		
.	Propagation delay time, high-to-low-level	SENSE	RESET	$V_{IH} = V_{IT+} max + 0.2 V,$ $V_{IL} = V_{IT-} min - 0.2 V,$ RESIN = 2.7 V,	Full range			7	μs	
tPHL	output	SENSE		CONTROL = 0.4 V,	25°C			20		
	·		RESET		Full range			24	μs	
	Propagation delay time, low-to-high-level output	RESIN			25°C			20		
.			RESET	$V_{IH} = 2.7 \text{ V},$ $V_{IL} = 0.4 \text{ V},$ SENSE = V_{IT+} max + 0.2 V,	Full range			24	μs	
^t PLH				CONTROL = 0.4 V,	25°C			45		
			RESET	CT = NC [†]	Full range			65	ns	
			l		25°C			40		
t	Propagation delay time, high-to-low-level	RESIN	RESET	V _{IH} = 2.7 V, V _{IL} = 0.4 V, SENSE = V _{IT+} max + 0.2 V,	Full range			60	ns	
^t PHL	output	RESIN		CONTROL = 0.4 V, CT = NC†	25°C			20		
			RESET		Full range			24	μs	
	Propagation delay				25°C			38		
^t PLH	time, low-to-high-level output	CONTROL	RESET	$V_{IH} = 2.7 \text{ V},$ $V_{IL} = 0.4 \text{ V},$ <u>SENSE</u> = V_{IT+} max + 0.2 V,	Full range			58	ns	
	Propagation delay	CONTROL	KLOLI	RESIN = 2.7 V,	25°C			38		
^t PHL	time, high-to-low-level output			CT = NC [†]	Full range			58	ns	
	Low-level minimum	SENSE		$V_{IH} = V_{IT+} max + 0.2 V,$ $V_{IL} = V_{IT-} min - 0.2 V,$	Full	3				
	pulse duration	RESIN		V _{IL} = 0.4 V, V _{IH} = 2.7 V	range	1			μs	
t _r	Rise time		RESET	10% to 90%	Full		8			
t _f	Fall time		and RESET	90% to 10%	range		4		ns/V	

[†] NC = No capacitor, and includes up to 100-pF probe and jig capacitance.


PARAMETER MEASUREMENT INFORMATION

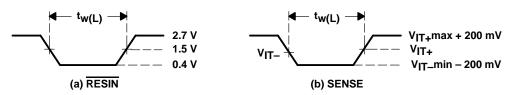
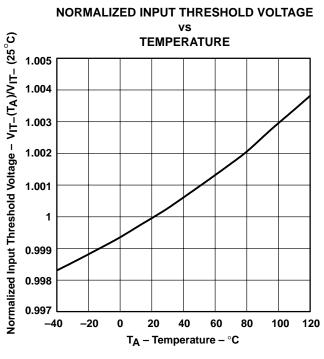

NOTES: A. For switching characteristics, $R_L = 2 \ k\Omega$. B. $C_L = 50 \ pF$ includes jig and probe capacitance.

Figure 1. RESET AND RESET Output Configurations

I, Q, and Y suffixed devices



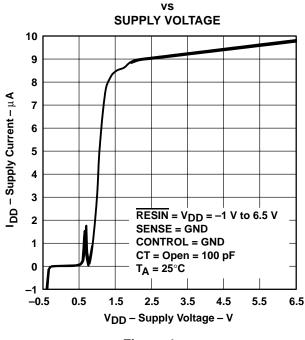
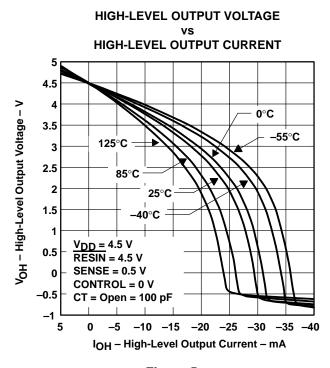

M suffixed devices

Figure 2. Input Pulse Definition Waveforms

TYPICAL CHARACTERISTICS



SUPPLY CURRENT

Figure 3

Figure 4

LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT V_{DD} = 4.5 V RESIN = 4.5 V 5 SENSE = 5 V VoL - Low-Level Output Voltage - V CONTROL = 0 V CT = Open = 100 pF 125°C 3 85°C 25°C -40°C -55°C 5 0 10 15 20 25 30 -5 IOL - Low-Level Output Current - mA

Figure 5

Figure 6

TYPICAL CHARACTERISTICS

INPUT CURRENT vs INPUT VOLTAGE AT SENSE

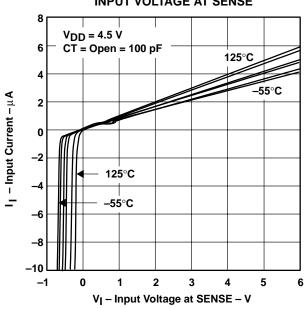


Figure 7

MINIMUM PULSE DURATION AT SENSE

SENSE THRESHOLD OVERDRIVE

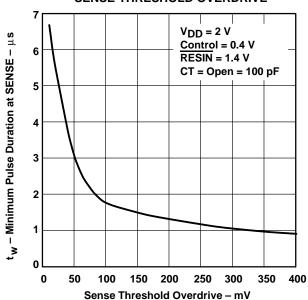


Figure 8

APPLICATION INFORMATION

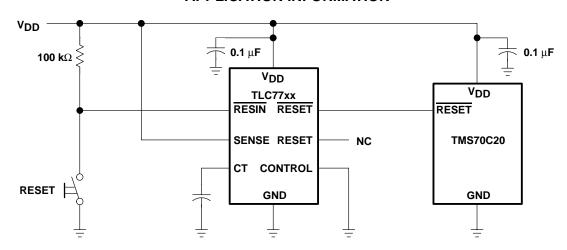
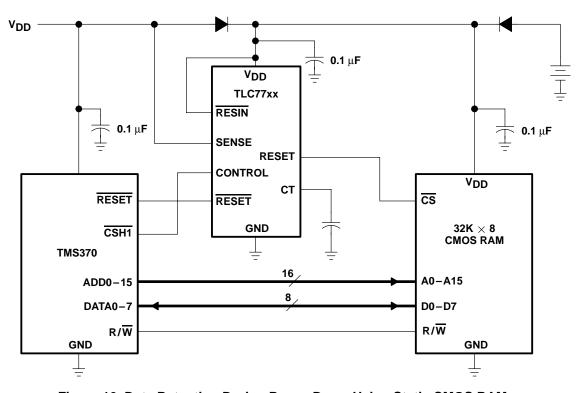
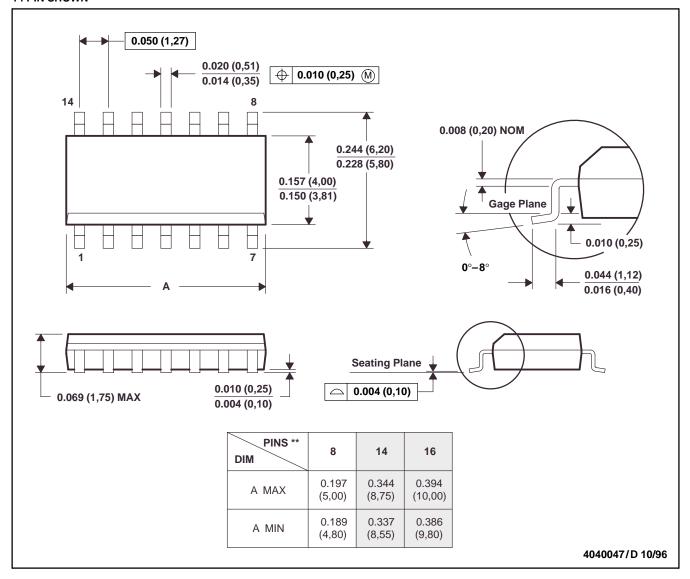


Figure 9. Reset Controller in a Microcomputer System




Figure 10. Data Retention During Power Down Using Static CMOS RAMs

MECHANICAL DATA

D (R-PDSO-G**)

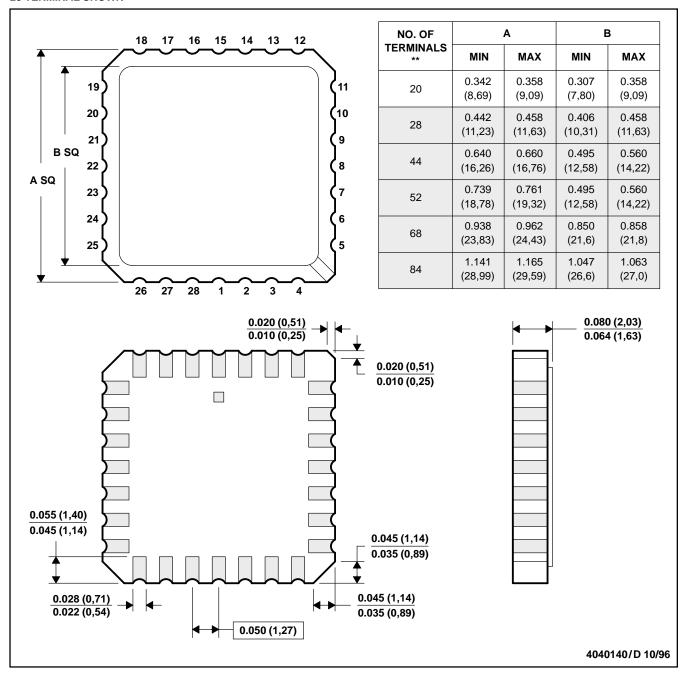
14 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

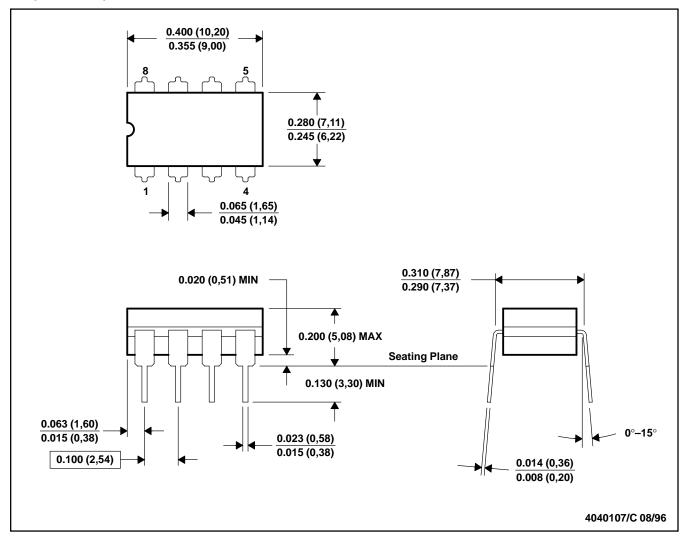

D. Falls within JEDEC MS-012

MECHANICAL DATA

FK (S-CQCC-N**)

28 TERMINAL SHOWN

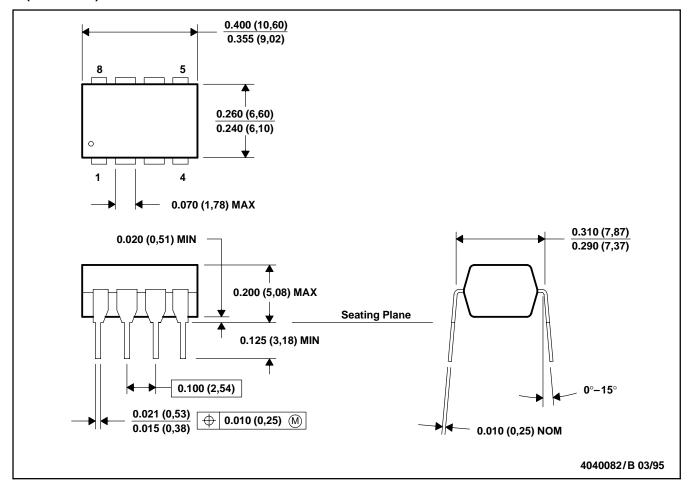
LEADLESS CERAMIC CHIP CARRIER


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a metal lid.
 - D. The terminals are gold plated.
 - E. Falls within JEDEC MS-004

MECHANICAL DATA

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL-STD-1835 GDIP1-T8

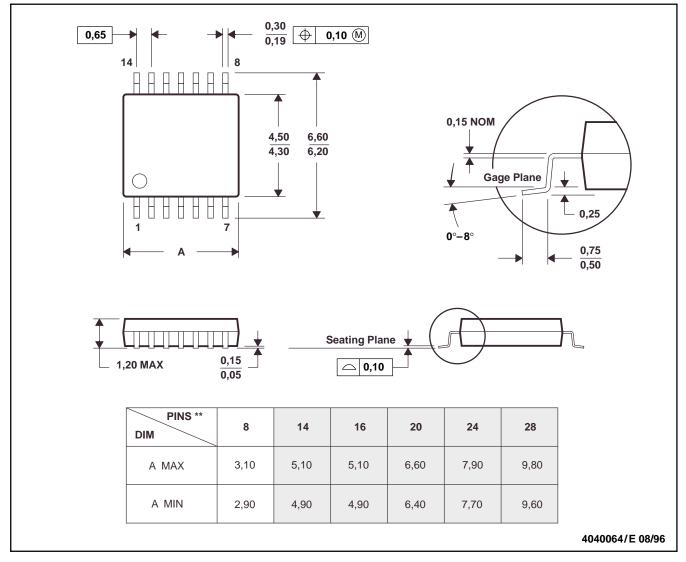
MECHANICAL DATA

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Falls within JEDEC MS-001

MECHANICAL DATA

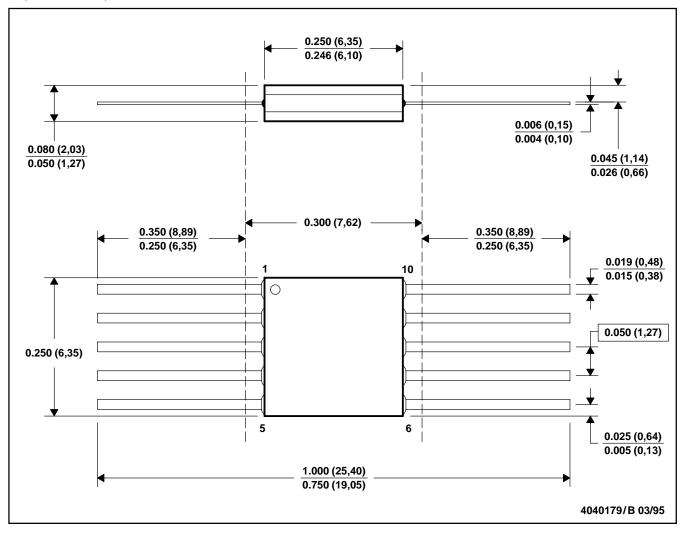
PW (R-PDSO-G**)

14 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

MECHANICAL DATA

U (S-GDFP-F10)

CERAMIC DUAL FLATPACK

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated